

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4731

Mechanics 4

Wednesday

21 JUNE 2006

Afternoon

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \, \text{m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

A straight rod AB of length a has variable density. At a distance x from A its mass per unit length is k(a+2x), where k is a positive constant. Find the distance from A of the centre of mass of the rod.

[5]

- A flywheel takes the form of a uniform disc of mass 8 kg and radius 0.15 m. It rotates freely about an axis passing through its centre and perpendicular to the disc. A couple of constant moment is applied to the flywheel. The flywheel turns through an angle of 75 radians while its angular speed increases from 10 rad s⁻¹ to 25 rad s⁻¹.
 - (i) Find the moment of the couple about the axis.

[5]

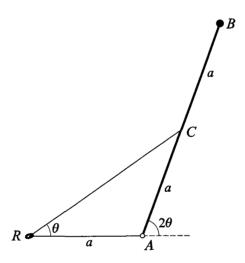
When the flywheel is rotating with angular speed $25 \, \text{rad s}^{-1}$, it locks together with a second flywheel which is mounted on the same axis and is at rest. Immediately afterwards, both flywheels rotate together with the same angular speed $9 \, \text{rad s}^{-1}$.

(ii) Find the moment of inertia of the second flywheel about the axis.

[3]

The region bounded by the x-axis, the lines x = 1 and x = 2 and the curve $y = \frac{1}{x^2}$ for $1 \le x \le 2$, is occupied by a uniform lamina of mass 24 kg. The unit of length is the metre. Find the moment of inertia of this lamina about the x-axis.

4



A uniform rod AB, of mass m and length 2a, is freely hinged to a fixed point at A. A particle of mass 2m is attached to the rod at B. A light elastic string, with natural length a and modulus of elasticity 5mg, passes through a fixed smooth ring R. One end of the string is fixed to A and the other end is fixed to the mid-point C of AB. The ring R is at the same horizontal level as A, and is at a distance a from A. The rod AB and the ring R are in a vertical plane, and RC is at an angle θ above the horizontal, where $0 < \theta < \frac{1}{4}\pi$, so that the acute angle between AB and the horizontal is 2θ (see diagram).

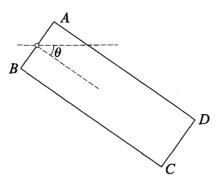
(i) By considering the energy of the system, find the value of θ for which the system is in equilibrium.

[7]

(ii) Determine whether this position of equilibrium is stable or unstable.

[3]

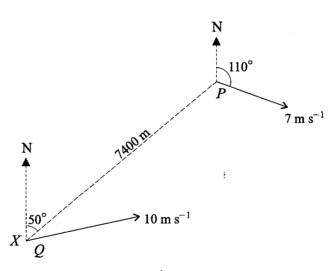
- A uniform rectangular lamina ABCD has mass 20 kg and sides of lengths AB = 0.6 m and BC = 1.8 m. It rotates in its own vertical plane about a fixed horizontal axis which is perpendicular to the lamina and passes through the mid-point of AB.
 - (i) Show that the moment of inertia of the lamina about the axis is 22.2 kg m². [3]



The lamina is released from rest with BC horizontal and below the level of the axis. Air resistance may be neglected, but a frictional couple opposes the motion. The couple has constant moment 44.1 N m about the axis. The angle through which the lamina has turned is denoted by θ (see diagram).

- (ii) Show that the angular acceleration is zero when $\cos \theta = 0.25$. [3]
- (iii) Hence find the maximum angular speed of the lamina. [5]

6



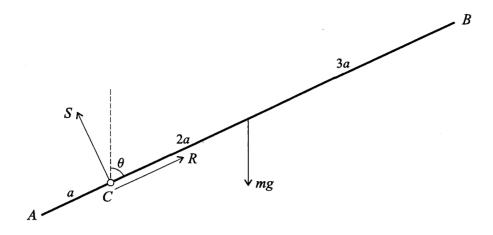
A ship P is moving with constant velocity $7 \,\mathrm{m\,s^{-1}}$ in the direction with bearing 110° . A second ship Q is moving with constant speed $10 \,\mathrm{m\,s^{-1}}$ in a straight line. At one instant Q is at the point X, and P is 7400 m from Q on a bearing of 050° (see diagram). In the subsequent motion, the shortest distance between P and Q is 1790 m.

(i) Show that one possible direction for the velocity of Q relative to P has bearing 036°, to the nearest degree, and find the bearing of the other possible direction of this relative velocity. [3]

Given that the velocity of Q relative to P has bearing 036° , find

- (ii) the bearing of the direction in which Q is moving, [4]
- (iii) the magnitude of the velocity of Q relative to P, [2]
- (iv) the time taken for Q to travel from X to the position where the two ships are closest together, [3]
- (v) the bearing of P from Q when the two ships are closest together. [1]

[Turn over



A uniform rod AB has mass m and length 6a. It is free to rotate in a vertical plane about a smooth fixed horizontal axis passing through the point C on the rod, where AC = a. The angle between AB and the upward vertical is θ , and the force acting on the rod at C has components R parallel to AB and S perpendicular to AB (see diagram). The rod is released from rest in the position where $\theta = \frac{1}{3}\pi$. Air resistance may be neglected.

- (i) Find the angular acceleration of the rod in terms of a, g and θ . [4]
- (ii) Show that the angular speed of the rod is $\sqrt{\frac{2g(1-2\cos\theta)}{7a}}$. [3]
- (iii) Find R and S in terms of m, g and θ . [6]
- (iv) When $\cos \theta = \frac{1}{3}$, show that the force acting on the rod at C is vertical, and find its magnitude. [4]

1	$\int x \rho \mathrm{d}x = \int_0^a k(a+2x) x \mathrm{d}x$	M1	for $\int(a+2x)x dx$
	$= k \left[\frac{1}{2} a x^2 + \frac{2}{3} x^3 \right]_0^a (= \frac{7}{6} k a^3)$	A1	
	$\int \rho \mathrm{d}x = k \int_0^a (a+2x) \mathrm{d}x = k \left[ax + x^2 \right]_0^a$	B1	for $\left[ax + x^2 \right]_0^a$
	$=2ka^2$		
	$\bar{x} = \frac{\frac{7}{6}ka^3}{2ka^2}$	M1	Dependent on first M1
	$2ka^2$ $= \frac{7}{12}a$	A1 5	Accept 0.583 <i>a</i>
2 (i)	$I = \frac{1}{2} \times 8 \times 0.15^2$ (= 0.09 kg m ²)	B1	
	Using $\omega_2^2 = \omega_1^2 + 2\alpha\theta$		
	$25^2 = 10^2 + 2\alpha \times 75$	M1A1	
	$\alpha = 3.5 \text{ rad s}^{-2}$ Couple is $I\alpha = 0.09 \times 3.5$	M1	
	= 0.315 N m	A1 ft	ft from wrong I and I or α , but ft requires M1M1
	OR Increase in KE is $\frac{1}{2} \times 0.09 \times (25^2 - 10^2)$ M1A1 ft		
	= 23.625 J M1		WD by couple is $L \times 75$
	Couple is $\frac{23.625}{75} = 0.315 \text{ N m}$ A1 ft		ft requires M1M1
(ii)	By conservation of angular momentum $(0.09 + I_2) \times 9 = 0.09 \times 25$	M1 A1 ft	Using angular momentum
	$I_2 = 0.16 \text{ kg m}^2$	A1 3	
3	$\int_{1}^{2} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{1}^{2}$	N/1	
	•	M1	
	$= \frac{1}{2}$ Mass per unit area $\rho = 48 \text{ kg m}^{-2}$	A1	
	Whats per unit area $\rho = 48 \text{ kg m}$ $I = \int \frac{4}{3} (\rho y \delta x) (\frac{1}{2} y)^2$	B1 M1	For integral of y^3
	$I = \int \frac{1}{3} \rho y^3 dx$ $= \int \frac{1}{3} \rho y^3 dx$	A1	To integral of y
	$= \frac{1}{3}\rho \int_{1}^{2} \frac{1}{x^6} dx$	A1 ft	
	$=\frac{1}{3}\rho\left[-\frac{1}{5x^5}\right]_1^2$	A1	For correct integration of $\frac{1}{x^6}$
	$=\frac{31}{480}\rho = \frac{31}{480} \times 48$		
	$480^{\circ} 480$ = 3.1 kg m ²	A1 8	

		l	
4 (i)	$RC = 2a\cos\theta$	B1	or $RC^2 = 2a^2 + 2a^2\cos 2\theta$
	$EPE = \frac{5mg}{2a} (2a\cos\theta)^2$	M1	
	$GPE = mga \sin 2\theta + 2mg(2a \sin 2\theta)$	M1	One term sufficient for M1
	$V = 10mga\cos^2\theta + 5mga\sin 2\theta$	A1	
	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = -20mga\cos\theta\sin\theta + 10mga\cos2\theta$	B1	Correct differentiation of $\cos^2 \theta$ (or $\cos 2\theta$) and $\sin 2\theta$
	$= -10mga \sin 2\theta + 10mga \cos 2\theta$ For equilibrium, $10mga(\cos 2\theta - \sin 2\theta) = 0$ $\tan 2\theta = 1$	M1	For using $\frac{dV}{d\theta} = 0$
	$\theta = \frac{1}{8}\pi$	A1 7	Accept $22\frac{1}{2}^{\circ}$, 0.393
(ii)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = -20mga\cos 2\theta - 20mga\sin 2\theta$	B1 ft	
	When $\theta = \frac{1}{8}\pi$, $\frac{d^2V}{d\theta^2} (= -20\sqrt{2} mga) < 0$	M1	Determining the sign of V''
	Hence the equilibrium is unstable	A1 3	Correctly shown
	OR Other method for determining whether <i>V</i> has a maximum or a minimum Correct determination A1 ft Equilibrium is unstable A1		Correctly shown
5 (i)	$I = \frac{1}{3}(20)(0.3^2 + 0.9^2) + 20 \times 0.9^2$	M1 M1	MI of lamina about any axis Use of parallel (or perp) axes rule
	$= 22.2 \text{ kg m}^2$	A1 (ag) 3	Correctly obtained
	OR $I = \frac{1}{3} \times 20 \times 0.3^2 + \frac{4}{3} \times 20 \times 0.9^2$ M1M1		As above
	$= 22.2 \text{ kg m}^2 $ A1		
(ii)	Total moment is $20 \times 9.8 \times 0.9 \cos \theta - 44.1$ Angular acceleration is zero when moment is zero	M1 M1	
	$\cos \theta = \frac{44.1}{20 \times 9.8 \times 0.9} = 0.25$	A1 (ag) 3	
(iii)	Maximum angular speed when $\cos \theta = 0.25$	M1	
	$\theta = 1.318$ Work done against couple is 44.1×1.318 By work energy principle, $\frac{1}{2}I\omega^2 = 20 \times 9.8 \times 0.9 \sin \theta - 44.1\theta$	A1 M1 A1 ft	Equation involving work, KE and PE
	$\omega = 3.19 \text{ rad s}^{-1}$	A1 5	

6 (i)	As viewed from P		
	7400 P		
	$\sin \alpha = \frac{1790}{7400}$	M1	
	$\alpha = 14.0^{\circ}$ Bearing of relative velocity is $50 - \alpha = 036^{\circ}$ or $50 + \alpha = 064^{\circ}$	A1 (ag) B1 ft	For 64 or ft $50 + \alpha$
(ii)	Velocity diagram		
	70° 36° 10VP	B1	Correct diagram (may be implied)
	$\frac{\sin\beta}{7} = \frac{\sin 106}{10}$	M1	Correct triangle must be intended
	$\beta = 42.3^{\circ}$ Bearing of \mathbf{v}_Q is $36 + \beta = 078.3^{\circ}$	A1 A1 4	Accept 78°
(iii)	$\frac{w}{\sin 31.7} = \frac{10}{\sin 106}$ $w = 5.47 \text{ m s}^{-1}$	M1 A1	If cosine rule is used, M1 also requires an attempt at solving the quadratic
	Alternative for (ii) and (iii) $ \begin{pmatrix} w \sin 36 \\ w \cos 36 \end{pmatrix} = \begin{pmatrix} 10 \sin \theta \\ 10 \cos \theta \end{pmatrix} - \begin{pmatrix} 7 \sin 110 \\ 7 \cos 110 \end{pmatrix} $ Obtaining an equation in θ only, and solving it M1		e.g. $10\sin\theta - 7.2654\cos\theta = 8.3173$
	$\theta = 78.3^{\circ}$ A2 Obtaining an equation in w only, and solving it M1 $w = 5.47 \text{ m s}^{-1}$ A1		or A1A1 if another angle found first
(iv)	$QC = \sqrt{7400^2 - 1790^2} = 7180 \text{ m}$ Time taken is $\frac{7180}{5.468}$	M1 M1	(Or M2 for other complete method for finding the time) For attempt at relative distance $\div w$
	5.468 = 1310 s	A1 ft	(not awarded for $7400 \div w$) or 21.9 minutes ft is $7180 \div w$
(v)	Bearing of <i>CP</i> is $90 + 36 = 126^{\circ}$	B1 1	

	T	1	T
7 (i)	$I = \frac{1}{3}m(3a)^2 + m(2a)^2$	M1	Using parallel axes rule
	$=7ma^2$	A1	
	$mg(2a\sin\theta) = I\alpha$	M1	
	$\alpha = \frac{2g\sin\theta}{7a}$	A1	
	74	4	
(ii)	By conservation of energy	M1 A1	Equation involving KE and PE
	$\frac{1}{2}I\omega^2 = mg(2a\cos\frac{1}{3}\pi - 2a\cos\theta)$	AI	Need to see how $\frac{1}{3}\pi$ is used
	$\frac{7}{2}ma^2\omega^2 = mga(1 - 2\cos\theta)$		
	$\omega = \sqrt{\frac{2g(1 - 2\cos\theta)}{7a}}$	A1 (ag) 3	Correctly obtained
(iii)		M1	For radial acceleration $r \omega^2$
	$mg\cos\theta - R = m(2a\omega^2)$	A1	
	$R = mg\cos\theta - \frac{4}{7}mg(1 - 2\cos\theta)$		
	$=\frac{1}{7}mg(15\cos\theta-4)$	A1	
		M1	For transverse acceleration $r\alpha$
	$mg\sin\theta - S = m(2a\alpha)$	A1	
	$S = mg\sin\theta - \frac{4}{7}mg\sin\theta$	A1	
	$=\frac{3}{7}mg\sin\theta$	6	
	OR $S(2a) = I_G \alpha = (3ma^2)\alpha$ M1A1		Must use I_G
	$S = \frac{3}{7} mg \sin \theta $ A1		
(iv)	When $\cos \theta = \frac{1}{3}$, $\sin \theta = \frac{\sqrt{8}}{3}$, $\tan \theta = \sqrt{8}$		
	$R = \frac{1}{7}mg , S = \frac{\sqrt{8}}{7}mg$	M1	
	Angle with R is $\tan^{-1} \frac{S}{R} = \tan^{-1} \sqrt{8} = \theta$		
	so the resultant force is vertical	A1	
	Magnitude is $\sqrt{R^2 + S^2}$	M1	
	$= \frac{1}{7} mg \sqrt{1 + 8} = \frac{3}{7} mg$	A1 4	
	OR When resultant force is F vertically upwards		
	$S = F \sin \theta$, hence $F = \frac{3}{7}mg$ M1A1		
	$R = F \cos \theta$, so $\frac{1}{\pi} mg (15 \cos \theta - 4) = \frac{3}{\pi} mg \cos \theta$ M1		
	, , ,		
	$\cos \theta = \frac{1}{3} $ A1		
	OR Horizontal force is $R \sin \theta - S \cos \theta$		
	$= \frac{1}{7} mg (15\cos\theta - 4)\sin\theta - \frac{3}{7} mg \sin\theta \cos\theta M1$		
	$= \frac{1}{7} mg \sin \theta (12 \cos \theta - 4)$		
	$= 0 \text{ when } \cos \theta = \frac{1}{3}$ $V_{\text{optical forms in } P \cos \theta + S \sin \theta}$		
	Vertical force is $R \cos \theta + S \sin \theta$ = $\frac{1}{7} mg \times \frac{1}{3} + \frac{3}{7} mg \times \frac{8}{9} = \frac{3}{7} mg$ M1A1		
	763789 78		